将汽水瓶或外卖容器放入回收箱并不能保证它会变成新的东西。莱斯大学的科学家们 正试图通过使该过程有利可图来解决这个问题。

盈利潜力让赖斯实验室的塑料废物项目有了希望

根据经济合作与发展组织的数据,在过去二十年中,全球产生的塑料废物数量翻了一番 ——预计到 2050 年塑料产量将增加两倍——其中大部分最终被填埋、焚烧或以其他方式管理不善。一些估计表明只有 5% 实际上被回收了。

“废塑料很少被回收利用,因为将塑料进行所有清洗、分类和熔化以将其转化为可供工厂使用的材料需要花费大量资金,”莱斯大学研究生凯文维斯说, 发表在Advanced Materials上的一项研究的主要作者 ,该研究描述了他和 化学家James Tour实验室的同事如何 使用他们的闪光焦耳加热技术 将塑料变成有价值的碳纳米管和混合纳米材料。

“我们能够制造出一种性能优于石墨烯 和市售碳纳米管的混合碳纳米材料,”Wyss 说。

石墨烯、碳纳米管和其他碳基纳米材料通常强度高、化学稳定性好、密度低、表面积大、具有导电性和宽带电磁吸收能力。这使得它们可用于各种工业、医疗和电子应用,例如复合材料、涂料、传感器、电化学储能等。

“这次我们的结果真正有趣的是,我们能够制造出这些碳纳米管,其末端附有一些石墨烯,”Wyss 说。“你可以把这种新型混合纳米材料的结构想象成类似于豆芽或棒棒糖。这些通常很难制作,而我们能够用废塑料制作它们这一事实真的很特别。”

新型杂化碳纳米材料的结构是其增强性能的原因。

“假设我正试图从一件毛衣中拉出一串纱线,”Wyss 说。“如果绳子又直又光滑,有时它很容易脱落并破坏编织。碳纳米管也是一样。将这些大量的石墨烯附着在末端有助于使它们更难去除,从而增强复合材料。

“你也可以这样想:如果你得到一个碎片,很容易取出来。但如果你被末端有曲线的东西刺伤,比如鱼钩,就很难取出来,”他补充道。

这种塑料不需要像传统回收那样进行分类或清洗,而是在超过 3,100 开尔文(约 5,120 华氏度)的温度下“闪蒸”。“我们所做的就是将材料研磨成五彩纸屑大小的小块,添加一点铁并混合少量不同的碳 - 例如木炭 - 以提高导电性,”Wyss 说。

“回收塑料的成本不仅仅是生产新塑料,”他补充道。“回收塑料几乎没有经济动力。这就是为什么我们转向升级回收,或将低价值废料转化为具有更高货币或使用价值的东西。如果我们可以将废塑料变成更有价值的东西,那么人们就可以通过对如何处理废弃塑料负责来赚钱。”

生产过程的生命周期分析表明,闪光焦耳加热比现有的纳米管生产过程更节能、更环保。

“与目前使用的碳纳米管生产商业方法相比,我们的方法使用的能源减少了约 90%,产生的二氧化碳减少了 90%-94%,”Wyss 说。

Tour 是该研究的合著者,是 TT 和 WF Chao 的化学教授,也是莱斯大学乔治 R. 布朗工程学院的材料科学和纳米工程教授。